Baterías de agua de mar

Por Mauricio R. Santiesteban                                                             Instituto Tecnológico Superior de Xalapa

La omnipresencia de las baterías de iones de litio en smartphones y otros dispositivos recargables, hace que sea difícil pensar en reemplazarlas. Sin embargo, el aumento del precio del litio hace que cada vez sean más los equipos de investigación que trabajan en buscar una alternativa a esta tecnología.
El último avance en esta línea de trabajo ha sido publicado en la revista CS AppliedMaterials& Interfaces y se basa en el uso de uno de los recursos más abundantes y baratos del plantea: el agua de mar.
Son muchos los científicos que trabajan para conseguir baterías de sodio-ion eficientes en todo el planeta y esta nueva investigación con baterías de agua de mar confirma de nuevo que pueden existir alternativas al litio.
Hoy este metal se extrae de minas situadas, fundamentalmente, en Chile, Bolivia y Afganistán y en un futuro no muy lejano puede resultar escaso para dotar de energía al creciente número de dispositivos que formarán parte de nuestra vida cotidiana.
En su trabajo publicado en CS AppliedMaterials& Interfaces los investigadores Soo Min Hwang, Youngsik Kim y sus colegas han abordado retos, usando agua de mar como catolito, un electrolito y un cátodo combinados.
En las baterías, el electrolito es el componente que permite que una carga eléctrica fluya entre el cátodo (polo negativo) y el ánodo (polo positivo). Un flujo constante de agua de mar dentro y fuera de la batería proporciona los iones de sodio y el agua responsables de producir una carga. Las reacciones resultaban lentas; sin embargo, por lo que los investigadores se afanaron en encontrar una manera de acelerarlas.
Para su nueva batería, el equipo preparó un catalizador usando nanopartículas porosas de óxido de manganeso cobalto. Los poros crean una gran superficie para estimular las reacciones electroquímicas necesarias para producir una carga. Un electrodo de carbono sirvió como ánodo.
La batería resultante funcionó eficazmente durante 100 ciclos con una tensión de descarga media de aproximadamente 2,7 voltios. Esto es aún poco si se compara con los resultados alcanzados con baterías de litio, que pueden llegar a 3.6 a 4.0 voltios, pero esta investigación es un importante avance para cerrar esa brecha, según los investigadores.

Parado el proyecto de Google que transformaría agua del mar en combustible

En la dirección blog.x.company se encuentra el blog de los proyectos “paralelos” de Google, proyectos de Google X, organización de Alphabet Inc. dedicada a hacer grandes avances tecnológicos, ideas que parecen salidas de libros de ciencia ficción.

El trabajo en el laboratorio es supervisado por Sergey Brin, uno de los cofundadores de Google, y en dicho blog es posible conocer los detalles de algunas de las misiones en las que están concentrados, siendo una de ellas la de transformar agua del mar en combustible barato.

Ajustando el sistema que extrae CO2 del agua del mar

Ajustando el sistema que extrae CO2 del agua del mar

Kathy Cooper, una de las líderes del proyecto, llamado Foxhorn, comenta en el artículo que, aunque consiguieron avanzar bastante en el aspecto técnico de la solución, las metas impuestas eran demasiado agresivas: conseguir obtener combustible barato, en menos de cinco años, para que pueda competir con los tradicionales ya usados en el mercado. Realizaron una infinidad de pruebas, consiguieron extraer CO2 del agua marina con éxito, consiguieron generar hidrógeno renovable… pero los costes no consiguieron mantenerse dentro de las metas establecidas: el resultado estaba siendo más caro que la gasolina actual.

En el texto vemos las tres lecciones aprendidas durante el proyecto: comenzar siempre por lo más difícil, para no creer que se está avanzando dentro del calendario cuando solo se están realizando trabajos sencillos; hacer una matemática realista y exacta, para no tener sorpresas de ningún tipo al final; encontrar el equilibrio entre idealismo y pragmatismo. Allí indican que las metas técnicas será publicadas con detalle por si alguien quiere continuar en el punto donde Google X tiró la toalla, y son optimistas con la solución a largo plazo (quizá en 10 años), pero no en 5 años, como pretendían originalmente.

Fuente: http://wwwhatsnew.com/2016/12/12/parado-el-proyecto-de-google-que-transformaria-agua-del-mar-en-combustible/

Los peligros de las bombillas de bajo consumo que nadie cuenta

Hace relativamente poco tiempo, aparecieron en nuestras vidas las lámparas de bajo consumo, cómodas y económicas; indudablemente tienen varias ventajas sobre las lámparas convencionales: la duración del uso, el costo, la ausencia de elementos incandescentes… Sin embargo, pocas personas saben que las lámparas ahorradoras son extremadamente perjudiciales para nuestra salud.

Echa un vistazo:

¿Lámparas económicas?.

Sucede que están hechas de forma muy peculiar: su principal fuente de luz es una sustancia especial – luminofor, que se distribuye por la pared interna de los tubos.

A menudo tienen forma de un tubo o una serpiente.

El interior de la lámpara se llena de vapor de mercurio y un gas inerte — argón… Bajo la influencia de la electricidad, los vapores de mercurio comienzan a emitir radiación ultravioleta, la cual, a su vez, estimula el luminifor para producir resplandor.

Los elementos de estas lámparas de bajo consumo fueron estudiados…

Cuidadosamente por Dieter Kunz, un profesor alemán, jefe del departamento de estudios del sueño, del hospital St. Hedwig en Berlín. Se llevó a cabo una serie de investigaciones, cuyos resultados concluyeron en que la luz fría, emitida por estas luces, causa una variedad de trastornos del sueño. También el profesor Kunz cree que las bombillas económicas afectan negativamente a todo el cuerpo:

«Su uso frecuente puede conducir a una variedad de patologías, que van desde la disfunción del tracto digestivo y terminando con enfermedades cardiovasculares, incluyendo infarto de miocardio, trastornos psiquiátricos y la depresión… Pero lo más importante es que las personas que realizan trabajos por turnos, tienen un mayor riesgo de enfermedades tumorales, y esto se aplica a todas las formas de tumores, conocidas por la medicina»

También es importante tener en cuenta:

Que las lámparas ahorradoras, constituyen la fuente de radiación electromagnética de radiofrecuencia, esta es otra razón más para abandonar el uso de este tipo de lámparas.

Fuente: http://difundir.org/2016/11/23/las-lamparas-de-bajo-consumo-ocultan-un-grave-peligro-lo-sabias/

Aprovechar la energía oculta en la mezcla de agua dulce de los ríos y el agua salada del mar.

Pensando en energías limpias

Una idea: convertir el río Magdalena en una pila

Ingenieros de la U. del Norte y la U. Nacional de Medellín calculan que el país podría obtener hasta un 10 % de su electricidad si aprende a aprovechar la energía oculta en la mezcla de agua dulce de los ríos y el agua salada del mar.

El 25 de agosto de este año, en un laboratorio de la U. Nacional de Medellín, se encendió un pequeño bombillo led. Fue uno de los momentos más felices en la vida del ingeniero Óscar Álvarez. Llevaba cuatro años tratando de entender y demostrar que Colombia podría explotar una fuente poco usual de energía limpia: la mezcla de agua dulce y agua salada en la desembocadura de sus ríos.

Los ingenieros que trabajaban con él tenían preparada esa sorpresa. Era el día en que se graduaba del doctorado en ciencias del mar. Habían pasado varios días trasnochando para completar el pequeño generador, capaz de aprovechar lo que ellos llaman con familiaridad “el gradiente de salinidad”.

Álvarez sabe que cada vez que usa esas palabras tiene que ponerse un poco más didáctico: “Todo lo que en la naturaleza represente una diferencia física o química implica un potencial. Cuando se mezcla agua dulce y agua salada se libera energía. No la podemos ver pero ahí está”. Una analogía siempre le ayuda: un metro cúbico de agua dulce mezclada con agua de mar puede producir la misma energía que produce un metro cúbico de agua que cae desde una altura de 200 metros.

En 1974 Richard Norman de la U. de Connecticut, en un artículo de la revista Science, había sugerido explorar esa fuente de energía. Pero la obsesión por los combustibles fósiles, baratos, fáciles de extraer, que no requieren mucha creatividad ni conocimiento, terminaron opacando esa y muchas otras ideas para explotar energías limpias. La amenaza del cambio climático, provocado por emisiones de gases asociados al petróleo y carbón, nos está obligando a desempolvar las viejas ideas.

En el caso de las energías marinas, paradójicamente, Colombia con sus dos océanos no parece tener mucho potencial. Al menos no en las más comunes que son oleaje, mareas y corrientes oceánicas profundas. El oleaje, por ejemplo, depende del viento y en el Caribe ventea con intensidad tan sólo cuatro meses al año. Sólo durante esa estrecha ventana de tiempo sería factible aprovechar la energía del oleaje.

En cuanto a las mareas, tampoco parece una buena apuesta según los cálculos de Álvarez, quien hoy forma parte del grupo de investigación en Geociencias de la Universidad del Norte, en Barranquilla. Para extraer energía del cambio de marea se necesita una diferencia de al menos cuatro metros en el nivel del mar. En el Pacífico colombiano, la diferencia de mareas apenas llega a 3,5 metros.

Algo similar ocurre con las corrientes profundas. En Colombia, las corrientes lo suficientemente fuertes para producir energía están a más de 500 kilómetros de la costa. Una distancia que las hace inviables económicamente por ahora. En el Caribe colombiano no son tan fuertes como entre Cuba y la Florida donde la corriente profunda alcanza los 26 millones de metros cúbicos por segundo. Una corriente 100 veces más fuerte que la del río Amazonas.

Álvarez y sus colegas, del grupo Oceánicos de la U. Nacional y el grupo de Investigación en Química, decidieron explorar una cuarta opción: los gradientes de salinidad. Este año publicaron, en la revista Renewable and Sustainable Energy Reviews, un mapa sobre el potencial energético oculto en la desembocadura de todos los ríos alrededor del mundo. El ejercicio los llevó a identificar 921 ríos con potencial, pero se concentraron en los 448 con mayores posibilidades. Sorpresivamente, el río Magdalena ocupó el sexto lugar en sus cuentas con un potencial de 600 megavatios. Es la misma cantidad de energía que genera Termoflores, la empresa de combustibles fósiles que abastece a toda Barranquilla en época de sequía.

“Es una de las energías renovables más confiables”, comenta Álvarez, pues las plantas funcionarían el 84 % del tiempo mientras las eólicas lo hacen únicamente el 45 % y las solares cerca del 20 %.

Pero si la desembocadura del río Magdalena se puede convertir en una gigantesca batería capaz de aportar un 10 % de la electricidad que hoy consume el país, la pregunta es cómo lograrlo. Y ahí la buena idea se convierte en un reto tecnológico y de ingeniería.

Lo que Álvarez y el grupo de la Universidad Nacional de Medellín lograron en el laboratorio fue un pequeño modelo de lo que podría alcanzarse a gran escala. “Es una tecnología tan fascinante como difícil de lograr a escala industrial”, advierte. Pero no imposible.

En Noruega ya existe una planta que simula el mismo proceso que ocurre en una pequeña célula. Esta tecnología se conoce como “ósmosis por presión retardada”. Al poner en contacto los dos fluidos (agua de río y agua de mar) mediante una membrana específica que permite pasar el agua, pero no las sales, se genera una diferencia de presión que puede aprovecharse en una turbina.

Ese es un camino difícil. La alternativa, la que Álvarez sueña ver construida algún día cerca de Bocas de Ceniza en Barranquilla, es una planta de electrodiálisis inversa. Suena complicado pero en el concepto básico es como tener una gigantesca batería de agua. En estos casos los que cruzan de un lado para otro a través de membranas son los iones y no el agua. En Holanda ya existe una planta experimental que genera 50 kw, poco más de la energía necesaria para prender unas 30 cafeteras o 1.000 bombillos. Se inauguró en 2014 y se invirtieron seis millones de euros. La idea de los holandeses es perfeccionar la tecnología.

“No queremos dejarles el desarrollo a los países desarrollados”, dice con entusiasmo Álvarez, “somos capaces”. Ahora están empezando a estudiar las membranas de intercambio iónico que son el componente tecnológico más crucial.

Después de ver alumbrar un bombillito led en el laboratorio ahora quieren construir un prototipo más grande a orillas del río Magdalena y generar unos 150 vatios. Ojalá lo logren.

Fuente: http://www.elespectador.com/noticias/ciencia/una-idea-convertir-el-rio-magdalena-una-pila-articulo-665805

Agua de mar y energía solar: Así funciona la enorme granja de cultivo vegetal en el suelo árido de Australia

Fue instalada intencionalmente en un ambiente que es hostil para la agricultura, con el fin de demostrar que es posible cultivar y comercializar productos en estas condiciones y sin usar combustibles fósiles, pesticidas o incluso suelo fértil.

La producción de tomates es abundante y eficiente (c) Sundrop Farm
La producción de tomates es abundante y eficiente (c) Sundrop Farm

Australia inauguró la primera granja del mundo en pleno desierto, que funciona solamente con energía solar y agua de mar.

Sundrop Farm se construyó en una árida región cercana a Port Augusta, en el sur de Australia, y ha estado en construcción por seis años. El invernadero de 20 hectáreas funciona únicamente con tecnologías de energía solar y de agua de mar, y es el primer sistema de agricultura en su tipo, que está utilizando las energías renovables a este nivel.

Fue instalado intencionalmente en un ambiente que es hostil para la agricultura, con el fin de demostrar que es posible cultivar y comercializar productos en estas condiciones y sin usar combustibles fósiles, pesticidas o incluso suelo fértil.

“A través del establecimiento de nuestras instalaciones de alta tecnología en invernaderos, estamos impulsando soluciones para la producción de alimentos saludables (…) y promoviendo la viabilidad de la agricultura a largo plazo en regiones que enfrentan restricciones de agua y de suministros energéticos”, dice el director de Sundrop Farms, Steve Marafiote, en un comunicado.

La instalación está a pocos kilómetros de Spencer Gulf, desde donde bombea agua de mar y luego remueve la sal con su planta termal de desalinización. Luego la sal y los nutrientes se rescatan para ser comercializados o reutilizarse en fertilización de cultivos.

Las instalaciones de 200 millones de dólares son un ejemplo pionero en tecnología y recursos renovables al servicio del cultivo de vegetales (c) Sundrop Farm

La planta de desalinización funciona con la energía proveniente de una torre solar de 115 metros de alto con 23.000 espejos, que produce hasta 39 megavatios diarios. La torre también genera suficiente energía para alimentar los sistemas de cultivo y proveer de electricidad para calentar y enfiar el invernadero gigante.

Las 180.000 plantas de tomate crecen en cascarilla de coco, por lo que no es necesario usar tierra de cultivo. El sistema de ventilación usa agua marina para limpiar y esterilizar el aire, por lo que no se necesitan pesticidas. Todo esto suena demasiado bueno para ser cierto, pero hasta el momento las instalaciones han probado su viabilidad.

Sundrop Farm produce 15.000 toneladas de tomates al año, ya comenzó a vender sus productos en el supermercado australiano Coles y se prepara para abrir invernaderos en Portugal y Estados Unidos.

El proyecto es pionero en el uso de tecnologías usadas efectivamente en lugares que carecen de tierras arables, fuentes de agua fresca o redes eléctricas, sin embargo no es la única iniciativa innovadora en el campo de hacer brotar la agricultura en territorios inhóspitos; con granjas verticales flotantes y huertos urbanos subterráneos también se está intentando acercar el futuro de la seguridad de la alimentación global.

Con la realidad del cambio climático, la necesidad de usar fuentes renovables de energía, un futuro que probablemente incluye mayores sequías y tormentas y la disminución de la productividad en los cultivos, este tipo de proyectos refrescan nuestras posibilidades y motivan la búsqueda de nuevas soluciones para un futuro menos hostil.

https://player.vimeo.com/video/183859356

Fuente: http://www.elciudadano.cl/2016/10/13/331930/agua-de-mar-y-energia-solar-asi-funciona-la-enorme-granja-de-cultivo-vegetal-en-el-suelo-arido-de-australia2/

Este futurista invernadero funciona en el desierto tan sólo con agua de mar y sol

Este futurista invernadero funciona en el desierto tan sólo con agua de mar y sol

Las sequías y la falta de agua son un mal común en algunas zonas del planeta, y eso lleva a las hambrunas y a varios problemas relacionados. Para tratar de ponerle una solución, un grupo internacional de científicos se ha pasado los últimos seis años diseñando el proyecto Sundrop, un revolucionario y futurista sistema de agricultura.

Está situado en el desierto del sur de Australia, una zona inhóspita, seca y calurosa que hasta ahora estaba considerada estéril para cualquier tipo de agricultura. Entonces llegó el proyecto de las Granjas Sundrop, quecon sólo energía solar y agua marina han conseguido producir hasta 17.000 toneladas de tomates al año.

Este sistema de agricultura es único en su especie, ya que no necesita tierra, pesticidas, combustibles * fósiles ni agua dulce. El proyecto empezó en el año 2010 con un invernadero experimental cerca de la ciudad de Port Augusta, y tras los buenos resultados, en 2014 comenzó la construcción de otro invernadero de 20 hectáreas en la misma zona que se completó en este mismo 2016.

¿Cómo lo hacen?

El invernadero cuenta con un sistema que trae el agua del mar del Golfo de Spencer, a dos kilómetros de distancia. El agua pasa a una planta de desalinización que funciona con energía solar, y donde tras eliminar la sal se produce la suficiente agua dulce como para regar las 180.000 plantas de tomate situadas en el interior del invernadero.

La energía solar la produce una moderna torre de 150 metros de altura, que cuenta con 23.000 espejos apuntando hacia ella para dirigir los rayos del sol. En un día soleado, se pueden producir hasta 39 megavatios de energía, suficientes para alimentar la planta desalinizadora y los sistemas eléctricos para mantener la temperatura en el invernadero.

La zona es calurosa, por lo que el invernadero está lleno de cartones mojados con agua salada que mantienen las plantas lo suficientemente frescas como para permitirlas crecer. En invierno en cambio, un calefactor solar es el encargado de mantener una temperatura agradable. El agua marina también ayuda a limpiar y esterilizar el aire del invernadero, lo que hace que no haga falta ningún tipo de pesticida. Los tomates producidos ya han empezado a venderse en los mercados locales.

La infraestructura ha costado unos 200 millones de dólares, lo cual es un pequeño impedimento para poder expandir la idea. Además, debido a que en invierno aún no se ha conseguido obtener siempre la energía suficiente para mantener todo el sistema, el invernadero solar aún tiene cierta dependencia de los combustibles fósiles. En cualquier caso, estos son dos problemas que esperan subsanar a medio plazo.

El próximo paso de Sundrop es el de abrir tres nuevas plantas solares, una en Portugal, una en Estados Unidos y otra en Australia. También se están haciendo programas piloto de invernaderos de agua marina en las zonas desértica de Omar, Qatar, y en los Emiratos Árabes.

Los sentimientos respecto a este proyecto son varios. Por una parte, algunos de sus responsables ven en él el futuro de la agricultura en zonas desérticas, sobre todo según vaya avanzando el cambio climático. Mientras, otros profesores universitarios cuestionan la necesidad de construirlos en Australia para plantar unos tomates que pueden crecer perfectamente en otras zonas del país.

Fuente: http://www.xataka.com/ecologia-y-naturaleza/agua-marina-y-sol-es-lo-unico-que-necesita-esta-futurista-granja-para-funcionar-en-el-desierto